MINISTRY OF GENERAL EDUCATION

PROVINCIAL SCHEMES OF WORK FOR CHEMISTRY 5070

Subject: CHEMISTRY 5070 Grade: 12

Term: One Year: 20.... Teacher: ------ periods per week: 6

WEEK	ΤΟΡΙϹ	SUB-TOPIC	SPECIFIC OUTCOMES	METHODOLOGY	SUGGESTED EXPERIMENTS	REFERENCES
1	CHEMISTRY AND ELECTRICITY	Conductors	Classify conductors and non- conductors Conductors, being metals such as copper, aluminium, silver and Non- conductors being non-metals such as sulphur, phosphorus, except carbon in form of graphite.	-Question and answer		-New certificate chemistry

2	Electrolysis	Classify electrolytes and non- electrolytes Difference between electrolytes and non-electrolytes: Electrolytes as ionic compounds and non- electrolytes as covalent compounds. Describe what electrolysis is Electrolysis: As decomposition of electrolyte using electricity in an electrolytic cell.	-Group Discussion	-Complete Chemistry
3		 Describe the products at the electrodes during electrolysis of molten binary ionic compounds. Products by electrolysis of molten binary ionic compounds: metals at the cathode by reduction, non-metals at the anode by oxidation Describe the products at the electrodes during electrolysis of aqueous ionic solutions. Products by electrolysis of aqueous ionic solutions: Refer to selective discharge of ions given conditions. Electrolytes should include molten lead (II) bromide, molten aluminium oxide, 	Question and answer Demonstration Discussion	Complete chemistry senior Secondary chemistry 10 Chemistry
		dilute sulphuric acid (acidified water), concentrated hydrochloric acid,		

		concentrated aqueous sodium chloride (brine) using carbon electrodes, and aqueous copper (II) sulphate using carbon and copper electrodes.		
		11		
4		Describe the industrial applications of electrolysis. Applications of electrolysis: Such as extraction of aluminium from its oxide, copper refinery and electroplating.	Demonstration Discussion	GCSE Chemistry
		Calculate the quantity of electrolytic products. The quantity of electrolytic products: Using Faradays laws		
	Simple cells	Describe what a chemical cell is	Demonstration	GCSE Chemistry
	(chemical	A chemical cell: Two different metals		
5	cell)	electrolyte to produce electricity.	Discussion	Senior Secondary chemistry 10
		Compare electrolytic cells and simple		chemistry 10
		cells		
		oxidation at the anode and reduction at		
		the cathode.		
		Differences such as cathode being		
		negative in electrolytic cell while		
		positive in simple cell and vice versa for the anode. Simple cell must use two		
		different electrodes while electrolytic		
		cell can use any.		

	METALS	General	Describe diagrammatic	Demonstration	GCSE Chemistry
6		properties	representations of pure metals		
		of metals	The diagrammatic representations of	Discussion	
			pure metals: Similar nuclei positive ions		Senior
			in a 'sea' of delocalised electrons.		Secondary
					chemistry 10
			Describe the physical properties of		
			metals.		
			The physical properties of metals: in		
			points, opposition		
			points, appearance		
			Describe the chemical properties of		
			metals		
			The chemical properties of metals: All		
			metals are electropositive as illustrated		
			in the reaction with air, water / steam,		
			dilute non-oxidizing acids, aqueous		
			solutions of other metal ions.		
		Reactivity	Describe the reactivity series of		
7		and	metals	Demonstration	
		Electro			
		Chemical	The reactivity series of metals: As		
		Series	arrangement of metals in the order of		
			either their increasing or decreasing		
			order of reactivity as being potassium,		
			sodium, calcium, magnesium,		
			aluminium, zinc, iron, lead, (hydrogen),		
			copper and silver		
			Fynlain the annarant non reactivity of		
			aluminium		
			aiuiiiiiuiii.		

	 Apparent non reactivity of aluminium: Due to the presence of adhesive oxide/coat. Reactivity of aluminium due to adhesive coat Demonstrate an order of reactivity. An order of reactivity: from a set of experimental results Such as reduction of oxides of metals by other metals. Describe the effects of heat on hydroxides, carbonates, nitrates of metals and ammonium compounds. Effects of heat on hydroxides, carbonates, nitrates of metals and ammonium compounds: As related to the reactivity/stability of the metallic ion present in the compound. Compounds of more reactive metals difficulty to decompose while compounds of less reactive metals easily decompose. 		
8	Describe the extraction of copper, iron, aluminium and zinc from their ores.Extraction of copper, iron, Aluminium and zinc: Chemical and electrolytic reduction. Chemical reducing agents being Carbon, carbon monoxide, and hydrogen.	Demonstration	

		Describe the extraction of copper,	Question and	New certificate
9		iron, aluminium and zinc from their	Answer	chemistry
-		ores.		
		Extraction of copper, iron,	Demonstration	
		Aluminium and zinc: Chemical and	Demonstration	
		electrolytic reduction. Chemical		Chomistry 10
		reducing agents being Carbon, carbon		Chemistry 10
		monoxide, and hydrogen. (Continued)		
		Describe the uses of copper, iron, zinc		
		and aluminium		
		Uses of copper, iron, zinc and		
		aluminium: Such as electrical wires,		
		construction, aircraft parts.		
		Explain the harmful effects of some		
		metals.		
		Harmful effects of metals: Such as lead		
		poisoning (brain damaging), sodium		
		ions in raising high blood pressure,		
		alzehermia by aluminm		
10	Alloys	Describe what an alloy is		
	-	An alloy: As mixture of two or	discussion	
		metals/carbon such as steel, brass,		
		bronze		
		Describe diagrammatic		
		representations of alloys.		
		The diagrammatic representations of		
		alloys: Different nuclei positive ions in a		
		'sea' of delocalised electrons		
		Explain the advantages of using alloys		

		 over pure metals. Advantages of using alloys: Such as alloys exhibiting better properties compared to a pure metal (conductor, strength, weight ratio, hardness) Identify common uses of alloys Common uses of alloys: Such as cutlery, food packaging, aircraft. 			
11	Corrosion	 Describe what corrosion is Corrosion: As chemical wearing of metals resulting from attack by atmospheric oxygen in presence of moisture. Relate corrosion to the reactivity of metals. The corrosion to the reactivity of metals: As more reactive metals easily corrode while less reactive metals do not easily corrode. 	Demonstration	•	New certificate chemistry GCSE Chemistry
		Describe the different methods of preventing corrosion. The methods of preventing corrosion: Such as sacrificial protection, painting, greasing/oiling, alloying and galvanising.			

12			•	
&				
13				